AP Biology

Date _____

REVIEW UNIT 4 & 5: HEREDITY & MOLECULAR GENETICS — "TOP TEN"

A. Top "10" — If you learned anything from this unit, you should have learned:

- 1. Meiosis produces haploid gametes
 - a. Meiosis 1 separates homologous pairs: reduction division
 - crossing over in Prophase 1
 - b. Meiosis 2 separates sister chromatids: produces 4 sex cells
- 2. Different versions of same gene are called alleles
 - a. dominant vs. recessive
 - b. homozygous vs. heterozygous
 - c. phenotype vs. genotype
- 3. Mendelian inheritance
 - a. monohybrid crosses
 - Aa x Aa = 3:1 ratio
 - Law of Segregation
 - b. dihybrid crosses
 - AaBb x AaBb = 9:3:3:1 ratio
 - Law of Independent Assortment
 - c. test cross
 - determine genotype of individual showing dominant phenotype
 - unknown (A_) x aa (homozygous recessive)
- 4. Non-Mendelian inheritance
 - a. incomplete dominance (pink flower color), co-dominance (blood type), sex linked (mainly X-linked: color blindness, hemophilia), epistasis (coat color), pleiotropy (dwarfism, giantism), polygenic (skin color)
- 5. Chi-square analysis
 - a. determining if observed results are significantly different from expected results
 - b. know how to use formula when given & how to interpret results
 - degrees freedom (1 less than number of classes of results)
 - less than p=.05, then difference can be due to random chance alone & null hypothesis is accepted
- 6. DNA & RNA
 - a. DNA: ACTG nitrogen bases, double helix
 - A : T, C : G
 - b. RNA: ACUG nitrogen bases, single helix

- 7. Central Dogma
 - a. DNA \rightarrow RNA \rightarrow protein \rightarrow trait
 - b. transcription (DNA \rightarrow mRNA)
 - in nucleus
 - RNA polymerase copies coding strand & produces mRNA
 - c. translation (mRNA \rightarrow protein)
 - in cytoplasm
 - codons on mRNA read by ribosome
 - matched to anticodons of tRNA
 - tRNA carries amino acids to mRNA & ribosome assembles polypeptide chain
 - start codon (Met) & stop codons, redundancy in code
 - universal code (single common ancestor)
- 8. Regulation of genes
 - a. operons
 - prokaryotes
 - cluster of genes for enzymes in a pathway
 - controlled by repressor protein
 - repressible operon (synthesis pathway = tryp operon) vs. inducible operon (digestive pathway = lac operon)
 - b. transcription factors
 - eukaryotes
 - proteins which enable bonding of RNA polymerase to gene
- 9. Mutations
 - a. fuel for evolution = variation, genetic change
 - b. gene duplication, point mutation, insertions, deletion
- 10. Biotechnology
 - a. Scientists can modify an organism's genome by inserting foreign DNA
 - bacterial transformation (human insulin gene in E. coli)
 - possible because of universal genetic code
 - b. Techniques
 - restriction digest: restriction enzymes, sticky ends
 - transformation: restriction enzymes, sticky ends, ligase, amp selection, lacZ screening
 - gel electrophoresis: DNA moves in an electrical field (negative → positive), small pieces move further

- PCR: DNA amplification
- RFLP: DNA fingerprinting
- Sanger sequencing: Human Genome Project

B. Labs

1. Genetics of Organisms (Fly Lab)

Be sure to review the procedures and the conclusions, and understand:

- a. How to determine genotype of individuals through crosses
- b. How to calculate Chi square values
- 2. Bacterial Transformation & Restriction Analysis

Be sure to review the procedures and the conclusions, and understand:

- a. How to set up a similar experiment
- b. How to interpret transformation results on LB vs. LB+amp plates
- c. How to interpret gel electrophoresis results in restriction analysis
- d. Controls vs. Experimental